
LOCK-IN DETECTION USING EXPEYES-17:

Square Wave Reference and Phase Detection

A project submitted for the evaluation of

INTEGRATED PHYSICS LABORATORY in SEM-VIII

by

ADHILSHA A (2011006)

to the

School of Physical Sciences

National Institute of Science Education and Research

Bhubaneswar

April 20, 2024

ACKNOWLEDGEMENTS

I express my sincere gratitude to the individuals whose support and guidance

were integral to the completion of this report. I extend my deepest thanks to Dr.

Ashok Mohapatra, our dedicated course instructor, whose insightful teachings greatly

enriched my academic experience.

I also acknowledge and appreciate the invaluable guidance provided by Dr. G.

Santhosh Babu. His expertise, suggestions, and corrections were pivotal in steering

this project towards successful completion. Furthermore, I extend our heartfelt thanks

to Mr. Sakthivel V. A and Mr. Rudranarayan Mohanty, our diligent lab assistants, as

well as the teaching assistant, Ms. Nandini Mondal, whose tireless efforts in assisting

with experimental details were invaluable. Their contributions played a crucial role

in the smooth execution of the experiments.

i

ABSTRACT

Lock-in detection, the popular signal processing technique, is renowned for its abil-

ity to extract weak signals from noise. Lock-in amplifiers are widely used in numerous

optical equipment and experimental configurations to detect weak signals superim-

posed on a noisy background. This motivates us to implement a Lock-in amplifier

using the advantages of the ExpEYES-17 hardware and the growing computational

power of Python programming software.

The implementation includes the measurement of the amplitude and phase of the

expected component of the signal specified by the reference signal. We also imple-

ment two variations, which use a sin reference signal and a square reference signal.

The implementation is then tested using two common experiments: measurement of

low resistance and measurement of mutual inductance. A comparison with the theo-

retical values is also made to validate the implementation. The results show that the

implementation is able to measure the amplitude with very high accuracy and phase

with reasonable accuracy.

ii

Contents
1 Introduction 1

2 Theory 3
2.1 Lock-in detection . 3

2.1.1 Sin Wave reference . 3
2.1.2 Square Wave Reference . 4

2.2 Measurement of Low Resistance . 6
2.3 Measurement of Mutual inductance 7

3 Experimental Setup and Methods 10
3.1 Data collection using ExpEYES-17 10
3.2 Sin wave reference & Lock-in detection 11
3.3 Square wave reference & Lock-in detection 14

3.3.1 Sin wave back-end . 14
3.3.2 Square wave back-end . 15

3.4 Measurement of low resistance . 19
3.5 Measurement of Mutual inductance 23

4 Observations, Calculations and Error Analysis 26
4.1 Sin wave reference - implementation 26
4.2 Square wave reference - implementation 27
4.3 Low Resistance . 29
4.4 Mutual Inductance . 30
4.5 Error analysis . 32

5 Discussions 33
5.1 Sources of error . 36
5.2 Precautions . 37

6 Results and Conclusions 38

References 39

iii

List of Figures
2.1 Simple circuit diagram for low resistance measurement 6
2.2 Simple circuit diagram for Mutual inductance measurement 9

3.1 ExpEYES-17 . 10
3.2 Low resistance measurement setup 20
3.3 Mutual inductance coil . 23
3.4 Mutual inductance experiment setup 23

4.1 Input and reference signals - normal (sin implementation) 26
4.2 Input and recreated signal - normal (sin implementation) 26
4.3 Input and reference signals - noisy (sin implementation) 27
4.4 Input and recreated signals - noisy (sin implementation) 27
4.5 Input and reference signals - normal (square implementation) 28
4.6 Input and recreated signal - normal (square implementation) 28
4.7 Input and reference signals - noisy (square implementation) 28
4.8 Input and recreated signals - noisy (square implementation) 28
4.9 The calculation of slope for low resistance measurement for difference

frequencies . 29
4.10 Independence of slopes in Figure 4.9 w.r.t. the frequency 30
4.11 The calculation of slope1 for mutual inductance 31
4.12 Calculation of slope2 from data in Figure 4.11 31

iv

Chapter 1

Introduction
One of the significant hurdle in experiments involving noisy signals is to get the best

possible signal recovery. Because conventional amplifiers are unable to efficiently

isolate the appropriate frequency components, they can only be used in in settings

with severely deteriorated noise. Due to this shortcoming, the intended signal is

overshadowed by increased noise levels, which results in insufficient signal-to-noise

ratios. This imbalance highlights the urgent need for novel strategies to close this

gap and improve signal recovery in noisy settings.

In various scientific and technological domains, Lock-in Detection is a powerful sig-

nal processing method that is used to separate weak signals from noisy backgrounds.

It operates by rejecting all other noise frequencies and using phase-sensitive detection

to isolate a specific frequency component, given the reference signal [5]. Applications

ranging from spectroscopy and communications to biological imaging and materi-

als characterization benefit greatly from its ability to precisely measure and analyse

signals that are masked by interference or lost in noise.

With its hardware and software components, ExpEYES (Experiments for Young

Engineers and Scientists) offers a flexible platform for conducting physics experi-

ments. This platform enables the implementation of sophisticated signal processing

techniques including lock-in detection. Researchers and educators can get practical

insights into lock-in detection’s operation and applications by using ExpEYES to

conduct hands-on exploration of its concepts.

This experiment explores the basics of lock-in detection and its implementation

1

1 Introduction

using ExpEYES, demonstrating its importance in signal recovery and measurement

in noisy situations.

We conduct our experiment with the following objectives:

1. To implement the Lock-in detection using a sin-wave reference.

2. To implement the Lock-in detection using a square-wave reference.

3. To test the square-wave reference implementation using validation measurement

of low resistance and measurement of mutual inductance.

2

Chapter 2

Theory
2.1 Lock-in detection

Lock-in-detection involves the use of a reference signal with single frequency compo-

nent to analyse a noisy signal from which the same component needs to identified. For

this, we multiply the signal with the reference signals of same phase and of quadrature

reference to get an in phase and quadrature phase components. The components can

be then used to find the amplitude and phase of the buried signal from noisy back-

ground. The reference signal can be either a sine wave or a square wave.

2.1.1 Sin Wave reference

Let the input signal be of the form:

Vs (t) = Vs sin (ωst + ϕ) (2.1)

where, ωs is the frequency, Vs is the amplitude and ϕ is the phase of the input signal.

We take two forms of the reference signal, one with same phase as input signal and

the other with a 90◦ phase difference. They are of the form,

Vr0 (t) = Vr sin (ωrt) (2.2)

Vr90 (t) = Vr cos (ωrt)

where ωr is the frequency and Vr is the amplitude of the reference signal.

Now, when we multiply the input signal with each of the reference signals we get,

Vs (t) ∗ Vr0 (t) = Vs ∗ Vr sin (ωst + ϕ) ∗ sin (ωrt)

Vs (t) ∗ Vr90 (t) = Vs ∗ Vr sin (ωst + ϕ) ∗ cos (ωrt)

3

2 Theory

Using trigonometric identity for sin(x)sin(y) and sin(x)cos(y) along with the as-

sumptions ωs = ωr and Vr = 2V, we can rewrite the above equations as:

Vr0 = Vs [cosϕ − cos (2ωrt + ϕ)] (2.3)

Vr90 = Vs [sin (2ωrt + ϕ) − sinϕ]

With a low pass filter, FFT in our case, the 2ωr high frequency term is isolated. The

zero-frequency peaks (V ′) obtained from the FFT outputs corresponds to the DC

parts of the signal given in the above equation.

V ′
r0 = FFT (Vr0) [0] /N = Vs cosϕ (2.4)

V ′
r90 = FFT (Vr90) [0] /N = Vs sinϕ

The peaks of FFT obtained through can be changed into amplitudes by dividing with

the total number of samples, N . The final amplitude of the signal is obtained as:

Vs =

√
(V ′

r0)
2 + (V ′

r90)
2 (2.5)

The phase is obtained as:

ϕ = arctan

(
V ′
r90

V ′
r0

)
(2.6)

2.1.2 Square Wave Reference

Let the signal under consideration be,

V (t) = VDC + Vs sin (ωst + ϕ) + noise (t) (2.7)

As discussed before, we need two orthogonal reference signals using which we

carry out quadrature multiplication as seen in above section. In case of square wave,

we need at least 4N points per cycle to make this multiplication possible (further in

4

2 Theory

discussions). This implies a constraint on the sampling frequency f(s) based on the

signal frequency f .

fs = 4Nf (2.8)

where N = 1, 2, 3... This means that that 4N points are sampled in a single period

of the signal[1]. The in-phase and quadrature-phase reference signal of the same

frequency as the signal in a single period are:

S(n) =

{
1 if 0 ≤ n ≤ 2N − 1

−1 if 2N ≤ n ≤ 4N − 1
(2.9)

C(n) =

{
1 if 0 ≤ n ≤ N − 1, 3N ≤ n ≤ 4N − 1

−1 if N ≤ n ≤ 3N − 1
(2.10)

On multiplying the input signal and the references for 1 cycle, we get,

I =
1

4N

4N−1∑
n=0

V (n)S (n) (2.11)

Q =
1

4N

4N−1∑
n=0

V (n)C (n)

Since the S(n) and C(n) only contains 1 and -1, the multiplication and accumulation

progress will become additions and subtractions [3]. The multiplications generate a

huge number of harmonics, and the averaging procedures can filter out the higher

frequency components. Then the results of in-phase and quadrature-phase output

are given as (with V (n) being the nth sample):

I (n) =
2Vs

π
cos

(
ϕ − π

4N

)
(2.12)

Q (n) =
2Vs

π
sin

(
ϕ − π

4N

)
The amplitude and the initial phase can be obtained by:

Vs =
π

2

√
I2 + Q2 (2.13)

ϕ = arctan

(
Q

I

)
+

π

4N
(2.14)

5

2 Theory

Figure 2.1: Simple circuit diagram for low resistance measurement

2.2 Measurement of Low Resistance

Because of the intrinsic noise and offsets that are usually present in low resistance

measurements, the signal obtained need to analysed with methods robust to noise.

For the same, we use lock-in detection to analyse the signal from low resistance with

respect to a signal from a larger resistance or the input signal. See a simple circuit

for such a measurement in Figure 2.1.

As given in the Figure 2.1, We can find the current through the circuit, which is:

I =
Vin

r +R
(2.15)

where Vin is the total applied voltage, r is the low resistance and R is the high

resistance.

Since the same current passes through both resistors, we can write:

VR

R
=

Vr

r
=

Vin

r +R
≈ Vin

R
(2.16)

where VR denotes the voltage across R and Vr denotes the voltage across r. The last

approximation above is valid when R >> r, which is the choice in our experiment.

6

2 Theory

Rearranging the terms, we get:

r =
RVr

Vin

(2.17)

Since, the voltage signal from low resistance could be extremely small, an amplifi-

cation can be done before lock-in detection. Thus, the output from Lock-in detection,

Vout will be:

Vout = αVr (2.18)

where α is the amplification factor.

Combining these equations, we get:

r =
RVout

αVin

(2.19)

2.3 Measurement of Mutual inductance

When two coils are arranged side by side and an AC current is sent through the

primary coil, an AC voltage of the same frequency is induced in the secondary coil

due to the phenomenon of Mutual Induction. To formulate this, let the primary

current vary as:

I = I0 sin (2πft) (2.20)

where f is the frequency in Hertz, then emf induced in the secondary coil is:

V = −M
dI

dt
(2.21)

V = −2πMfI0 sin
(
2πft +

π

2

)
V = −2πMf

V0

R
sin

(
2πft +

π

2

)
where M is the mutual inductance and R is the total resistance. From the above

equations, we can conclude the following:

7

2 Theory

1. The phase difference between the primary current and the induced emf is π/2.

2. The emf is proportional to the amplitude V0 of the input since the resistance is

a constant (I0 = V0/R).

3. The emf is proportional to the frequency f .

We use the lock-in detector to measure the voltage across the secondary coil (Vsec).

If α is the gain of the lock-in amplifier and Vout is the voltage obtained after lock-in

detection, then the voltage across the secondary coil will be:

Vsec =
Vout

α
(2.22)

∴ the mutual inductance can be calculated as

M =
VoutR

2πfαV0

(2.23)

To show the collection of the required inputs, a sample circuit is shown in Figure

2.2.

In Figure 2.2, we use an Op-Amp (non-inverting mode). If Rin is the input resistor

and Rf is the feedback resistor (potentiometer in use). Then, the value of α becomes:

α = 1 +
Rf

Rin

(2.24)

8

2 Theory

Figure 2.2: Simple circuit diagram for Mutual inductance measurement

9

Chapter 3

Experimental Setup and Methods

3.1 Data collection using ExpEYES-17

ExpEYES-17 is interfaced and powered by the computer’s USB port and may be

programmed in Python. It can be used as a low-frequency oscilloscope, function gen-

erator, programmable voltage source, frequency counter, and data logger. Connectors

on the top panel allow you to attach external signals, as seen in Figure 3.1. The pro-

gram can monitor and regulate the voltages at these terminals. To use the EYES17

hardware, the Python modules for eyes17 must be installed [2].

Figure 3.1: ExpEYES-17

To collect the signal and reference using ExpEYES-17, we use the capture2()

from the Python library eyes17, which connects and operates the related hardware.

As per the User manual [2], The number of samples can be up to 10000, and the

time gap between two consecutive samples is in the range [2µs, 1000µs].

After setting a reasonable sampling frequency using the frequency knowledge and

10

3 Experimental Setup and Methods

doing a warmup-test run (further details in discussion), we can start taking the data

continuously for the current ExpEYES17 settings. A sample code is given below.

1 import eyes17

2 p=eyes17.eyes.open()

3

4 N_sample = 5000

5 f = 500 # Hz - prior frequency knowledge

6 N_div =64 # samples per cycle

7 t_gap = (1/(f*N_div))*10**6 #micro sec

8

9 warmup_values = [100]

10 for val in range (500 ,10001 ,500):

11 warmup_values.append(val)

12

13 def warmup_expeyes(t_gap , warmup_values):

14 for val in (warmup_values):

15 t,v, tt,vv = p.capture2(val , t_gap)

16

17 warmup_expeyes(N_sample , t_gap) # user -defined function for warmup -test run

18

19 t, sig , t_, ref = p.capture2(N_sample , t_gap) # signal connected to ’A1’ and

reference to ’A2’

3.2 Sin wave reference & Lock-in detection

The following steps are the steps implemented:

1. First, both input and reference is captured as discussed in the above section.

2. Then, the signal can be triggered using the reference signal at hand and also

from the right side of the signal (more in discussion).

3. Using the frequency information from the reference signal, we generate sin (in-

phase) and cos (quadrature) signals of amplitude 2V .

4. Following this, the signal is then multiplied with the reference signals and then

passed through scipy.fft to obtain the FFT plots.

5. After identifying the zero peaks and converting them to amplitude, we can

use equations (2.5) and (2.6) to find the amplitude and phase of the signal in

question.

11

3 Experimental Setup and Methods

The code for the process is given below.

1 # function generator settings

2 f = 500 #Hz

3

4 # expeyes17 settings

5 N_sample = 8192

6 N_div =64

7 t_gap = (1/(f*N_div))*10**6 #us

8

9 # experimental settings

10 warmup = True # if warmup is needed

11 warmup_repititive = False # if warmup need to be reapeated every run

12 triggering = True

13 right_clip = True

14

15 auto_freq = True # if True , the frequency is calculated from the reference

16 freq_method = ’fft’ # ’fft’ or ’zero_crossing ’

17

18 # internal settings dont touch!

19 warmup_flag = 0

20

21 print("settings␣ready!")

22

23 if warmup and warmup_flag == 0:

24 if warmup_repititive: print("Performing␣repititive␣warmup ...")

25 else: print("Performing␣a␣warmup␣run..␣coz␣the␣Expeyes␣misbehaving␣otherwise!")

26

27 warmup_expeyes(t_gap)

28 warmup_flag = 1

29 elif not warmup:

30 print("NO␣WARMuP ..␣POSSIBLE␣FAILURE␣OF␣CAPTURE2 ...")

31 t,v, tt ,vv = p.capture2(N_sample , t_gap)

32

33 v= np.array(v)

34 vv = np.array(vv)

35

36 # trigger the reference signal vv by rising edge

37 def trigger(vv):

38 for i in range(len(vv) -1):

39 if vv[i] < 0 and vv[i+1] > 0:

40 return i + 1

41 return i

42

43 if triggering:

44 trigger_index = trigger(vv)

45 # print(f"Trigger index = {trigger_index }")

46

47 triggered_t = t[trigger_index :]

48 triggered_v = v[trigger_index :]

49 triggered_vv = vv[trigger_index :]

50 else:

51 triggered_t = t

52 triggered_v = v

53 triggered_vv = vv

54

55 def right_clip_trigger(triggered_vv):

56

57 right_clip_index = len(triggered_vv) - 1

58 for i in range(right_clip_index , 0, -1):

59 if triggered_vv[i] > 0 and triggered_vv[i-1] < 0:

60 return i - 1

61 return i

62

12

3 Experimental Setup and Methods

63 if right_clip:

64 right_clip_index = right_clip_trigger(triggered_vv)

65 # print(f"Right clip index = {right_clip_index }")

66

67 triggered_t = triggered_t [: right_clip_index]

68 triggered_v = triggered_v [: right_clip_index]

69 triggered_vv = triggered_vv [: right_clip_index]

70

71 V_sin_ref =[]

72 V_cos_ref =[]

73 t_ref = []

74

75 if auto_freq:

76 if freq_method == ’fft’:

77 freq=fftfreq(len(vv) ,(t[1]-t[0]) *0.001)

78 sine_fft=fft(vv)

79 xf = fftshift(freq)

80 yplot = (1/len(v)) * fftshift(sine_fft)

81

82 # only positive frequencies

83 xf2 = xf[xf >0]

84 yplot2 = np.abs(yplot[xf >0])

85

86 # finding the max peak value

87 peak_value = np.max(yplot2)

88

89 # finding the first peak that is greater than 0.5 times the peak value

90

91 peak_index = np.where(yplot2 > 0.8* peak_value)[0][0]

92

93 freq = xf2[peak_index]

94

95

96 elif freq_method == ’zero_crossing ’:

97 zero_crossings = np.where(np.diff(np.sign(vv)))[0]

98 freq = 1/(2*(t[zero_crossings [1]]-t[zero_crossings [0]]))

99

100 print(f"Auto␣detected␣frequency␣=␣{freq}␣Hz")

101 else:

102 freq = f

103

104

105 curr_N_sample = len(triggered_v)

106 for i in range(curr_N_sample):

107 V_sin_ref.append (2*m.sin(2*m.pi*freq*i*t_gap *10** -6))

108 V_cos_ref.append (2*m.cos(2*m.pi*freq*i*t_gap *10** -6))

109 t_ref.append(i*t_gap)

110

111 print(len(V_sin_ref))

112

113 v_pm_sin = []

114 v_pm_cos = []

115 for i in range(curr_N_sample):

116 v_pm_sin.append(v[i]* V_sin_ref[i])

117 v_pm_cos.append(v[i]* V_cos_ref[i])

118

119 freq=fftfreq(curr_N_sample ,(t[1]-t[0]) *0.001)

120 sine_fft=fft(v_pm_sin)

121 cos_fft=fft(v_pm_cos)

122

123 xf = fftshift(freq)

124 yplot = (1/ curr_N_sample) * fftshift(sine_fft)

125

126 yplot = (1/ curr_N_sample) * fftshift(cos_fft)

13

3 Experimental Setup and Methods

127

128 V = np.sqrt((sine_fft [0]. real/len(sine_fft))**2+(cos_fft [0]. real/len(cos_fft))**2)

129 phase = np.arctan2 ((cos_fft [0]. real/len(cos_fft)) ,(sine_fft [0]. real/len(sine_fft)))

130 print("Voltage␣is",V,"␣V")

131 print("Phase␣of␣the␣output␣Voltage",np.rad2deg(phase),’␣deg’)

This implementation is a stepping zone to square wave Lock-in and has been

tested before. Our experiments will be mainly focused on testing the capabilities of

square wave Lock-in with square wave back-end. The reasons will be explained in the

next sections.

3.3 Square wave reference & Lock-in detection

Here, the goal is to implement Lock-in detection, given a signal and a square wave

reference. Since, the sin-wave implementation works by extracting information from

the reference signal and create the sin and cos references required, we can use that

as the back-end to achieve the expected results given in Section 2.1.1.

Another implementation would be to explicitly use the square wave reference

characteristics to perform quadrature multiplications and use it to calculate the results

as discussed before in 2.1.2. Our experiments will focus mainly here, since the others

have been tested before by other students.

3.3.1 Sin wave back-end

The following steps are the steps implemented:

1. First, both input and reference is captured as discussed in the above section

with N_div (the number of samples per cycle) a multiple of 4.

2. Then, the steps from the sin wave implementation are repeated since the back-

end calculations are sin-cos reference signals.

14

3 Experimental Setup and Methods

This will yield the same results from that of sin wave reference implementation

and therefore not pursued further.

3.3.2 Square wave back-end

Here, the in-phase and quadrature signals used in reference will be square waves. The

following steps are the steps implemented:

1. First, both input and reference is captured as discussed above.

2. Then, the signal can be triggered using the reference signal at hand and also

from the right side of the signal (more in discussion).

3. Using the frequency information from the reference signal (obtained through

frequency or detecting cycle change in reference signal), we generate in-phase

and quadrature square wave signals of amplitude 1V (range is -1 to 1).

4. We also implemented an alternative, where we take the acquired reference signal

and get the quadrature form by removing the first N_div/4 samples (a quarter

of a cycle defined in data collection). Then, the signals and sliced from the right

to match the quadrature signal length.

5. Following this, the signal is then multiplied with the reference signals and

summed over as discussed in equation (2.11).

6. Then, we can apply equations (2.13) and (2.14) to calculate the amplitude and

phase of the expected component.

The code used for the same is given below:

1 # function generator settings

2 f = 500 #Hz

3

4 # expeyes17 settings

5 N_sample = 10000

15

3 Experimental Setup and Methods

6 N_div =64

7 t_gap = (1/(f*N_div))*10**6 #us

8 voltage_range_A1 = 0.25

9 voltage_range_A2 = 1.5

10 p.select_range(’A1’,voltage_range_A1)

11 p.select_range(’A2’,voltage_range_A2)

12

13 # experimental settings

14 warmup = True # if True , the warmup is done ince at beginning

15 warmup_repititive = False #if True , the warmup is done for each run

16 triggering = False

17 right_clip = False

18 t_gap_reset = True # if True , the t_gap will be reset based on the detected frequency

19

20 auto_freq = True #if True , the frequency is automatically calculated

21 # use fft or check the indices of zero crossing pf reference to

find frequency

22 sq_wave_quadrature_method = ’phase_lag ’ # can be either ’sin_cos ’ or ’phase_lag ’

23 # generating square wave or using phase_lag

24

25 # internal settings dont touch!

26 warmup_flag = 0

27

28 print("settings␣ready!")

29

30 if t_gap_reset:

31 if warmup and warmup_flag == 0:

32 if warmup_repititive: print("Performing␣repititive␣warmup ...")

33 else: print("Performing␣a␣warmup␣run..␣coz␣the␣Expeyes␣misbehaving␣

otherwise!")

34

35 warmup_expeyes(t_gap)

36 elif not warmup:

37 print("NO␣WARMuP ..␣POSSIBLE␣FAILURE␣OF␣CAPTURE2 ...")

38 t,v, tt,vv = p.capture2(N_sample , t_gap)

39

40 if freq_method == ’fft’:

41 freq=fftfreq(len(vv) ,(t[1]-t[0]) *0.001)

42 sine_fft=fft(vv)

43 xf = fftshift(freq)

44 yplot = (1/len(v)) * fftshift(sine_fft)

45

46 # only positive frequencies

47 xf2 = xf[xf >0]

48 yplot2 = np.abs(yplot[xf >0])

49

50 # finding the max peak value

51 peak_value = np.max(yplot2)

52

53 # finding the first peak that is greater than 0.5 times the peak value

54

55 peak_index = np.where(yplot2 > 0.8* peak_value)[0][0]

56

57 freq = xf2[peak_index]

58

59

60 elif freq_method == ’zero_crossing ’:

61 zero_crossings = np.where(np.diff(np.sign(vv)))[0]

62 freq = 1/(2*(t[zero_crossings [1]]-t[zero_crossings [0]]))

63

64 print(f"Auto␣detected␣frequency␣=␣{freq}␣Hz")

65

66 f = freq

67 t_gap = freq_detection_reset_tgap(f,N_div)

16

3 Experimental Setup and Methods

68

69 print(f"t_gap␣=␣{t_gap}␣us")

70 print(f"N_sample␣=␣{N_sample}")

71

72

73 def Lockin_detector_single_run(warmup_flag , f, t_gap):

74 if warmup and warmup_flag == 0:

75 if warmup_repititive: print("Performing␣repititive␣warmup ...")

76 else: print("Performing␣a␣warmup␣run..␣coz␣the␣Expeyes␣misbehaving␣

otherwise!")

77

78 warmup_expeyes(t_gap)

79 warmup_flag = 1

80 elif not warmup:

81 print("NO␣WARMuP ..␣POSSIBLE␣FAILURE␣OF␣CAPTURE2 ...")

82 t,v, tt,vv = p.capture2(N_sample , t_gap)

83

84 v= np.array(v)

85 vv = np.array(vv)

86

87 # trigger the reference signal vv by rising edge

88

89 def trigger(vv):

90 for i in range(len(vv) -1):

91 if vv[i] < 0 and vv[i+1] > 0:

92 return i + 1

93 return i

94

95 def right_clip_trigger(triggered_vv):

96

97 right_clip_index = len(triggered_vv) - 1

98 for i in range(right_clip_index , 0, -1):

99 if triggered_vv[i] > 0 and triggered_vv[i-1] < 0:

100 return i - 1

101 return i

102

103

104 if triggering:

105 trigger_index = trigger(vv)

106 # print(f"Trigger index = {trigger_index }")

107

108 triggered_t = t[trigger_index :]

109 triggered_v = v[trigger_index :]

110 triggered_vv = vv[trigger_index :]

111 else:

112 triggered_t = t

113 triggered_v = v

114 triggered_vv = vv

115

116 if auto_freq:

117 if freq_method == ’fft’:

118 freq=fftfreq(len(vv) ,(t[1]-t[0]) *0.001)

119 sine_fft=fft(vv)

120 xf = fftshift(freq)

121 yplot = (1/len(v)) * fftshift(sine_fft)

122

123 # only positive frequencies

124 xf2 = xf[xf >0]

125 yplot2 = np.abs(yplot[xf >0])

126

127 # finding the max peak value

128 peak_value = np.max(yplot2)

129

130 # finding the first peak that is greater than 0.5 times the peak value

17

3 Experimental Setup and Methods

131 peak_index = np.where(yplot2 > 0.8* peak_value)[0][0]

132

133 freq = xf2[peak_index]

134

135 elif freq_method == ’zero_crossing ’:

136 zero_crossings = np.where(np.diff(np.sign(vv)))[0]

137 freq = 1/(2*(t[zero_crossings [1]]-t[zero_crossings [0]]))

138

139 print(f"Auto␣detected␣frequency␣=␣{freq}␣Hz")

140 else:

141 freq = f

142

143 V_sin_ref =[]

144 V_cos_ref =[]

145 t_ref = []

146

147 curr_N_sample = len(triggered_v)

148 for i in range(curr_N_sample):

149 V_sin_ref.append(amp*m.sin (2*m.pi*freq*i*t_gap *10** -6))

150 V_cos_ref.append(amp*m.cos (2*m.pi*freq*i*t_gap *10** -6))

151 t_ref.append(i*t_gap)

152

153 if sq_wave_quadrature_method == ’sin_cos ’:

154 v_sq_inphase = np.sign(V_sin_ref)

155 v_sq_quadrature = np.sign(V_cos_ref)

156 elif sq_wave_quadrature_method == ’phase_lag ’:

157 triggered_vv = np.sign(triggered_vv)

158

159 v_sq_inphase = triggered_vv

160

161 # finding the next zero crossing of the reference signal

162 zero_crossings = np.where(np.diff(np.sign(vv)))[0]

163 index_difference = (zero_crossings [1]- zero_crossings [0]) // 2

164

165 v_sq_quadrature = np.sign(triggered_vv[index_difference :])

166

167 # making the length of all signals equal

168 v_sq_inphase = v_sq_inphase [:len(v_sq_quadrature)]

169 triggered_t = triggered_t [:len(v_sq_quadrature)]

170 triggered_v = triggered_v [:len(v_sq_quadrature)]

171 triggered_vv = triggered_vv [:len(v_sq_quadrature)]

172 t_ref = t_ref [:len(v_sq_quadrature)]

173 V_sin_ref = V_sin_ref [:len(v_sq_quadrature)]

174 V_cos_ref = V_cos_ref [:len(v_sq_quadrature)]

175

176 if right_clip:

177 right_clip_index = right_clip_trigger(triggered_vv)

178 # print(f"Right clip index = {right_clip_index }")

179

180 triggered_t = triggered_t [: right_clip_index]

181 triggered_v = triggered_v [: right_clip_index]

182 triggered_vv = triggered_vv [: right_clip_index]

183 v_sq_inphase = v_sq_inphase [: right_clip_index]

184 v_sq_quadrature = v_sq_quadrature [: right_clip_index]

185 V_sin_ref = V_sin_ref [: right_clip_index]

186 V_cos_ref = V_cos_ref [: right_clip_index]

187 t_ref = t_ref [: right_clip_index]

188

189 curr_N_sample = len(triggered_v)

190

191 y_inphase = triggered_v * v_sq_inphase

192 y_quadrature = triggered_v * v_sq_quadrature

193

194 # performing the operations

18

3 Experimental Setup and Methods

195 sum_y_inphase = np.sum(y_inphase) / len(y_inphase)

196 sum_y_quadrature = np.sum(y_quadrature) / len(y_quadrature)

197

198 N_paper = N_div // 4 # N from the equations

199

200 # Observed amplitude and phase

201 A = np.sqrt(sum_y_inphase ** 2 + sum_y_quadrature ** 2) *(np.pi / 2)

202

203 phase = np.arctan2(sum_y_quadrature , sum_y_inphase) + (np.pi / (4 * N_paper))

204

205 print(’Observed␣Amplitude:’, A)

206 print(f’Observed␣Phase:␣{np.rad2deg(phase)}␣deg’)

207

208 return A, np.rad2deg(phase), warmup_flag

3.4 Measurement of low resistance

For low resistance measure, we implement the followings steps:

1. Connect two resistors of resistance R and r in series such that R >> r, where

r is the resistance of interest.

2. The input voltage is applied across R + r and the signal is taken across just r.

3. This signal in our case was in a range compatible with the lowest resolution of

the ExpEYES-17 and hence we did not implement any amplification. Hence,

α = 1.

4. This signal and the a square wave reference in phase with the input is passed

into ExpEYES-17 and Lock-in detection is implemented.

The circuit diagram is given in Figure 3.2.

19

3 Experimental Setup and Methods

Figure 3.2: Low resistance measurement setup

AC signals with Vpeak varying from 1 V to 3.5 V in steps of 0.5 V . For each

signal, the Vout was calculated and recorded in an array. This was repeated for

different frequencies ranging from 300 Hz to 700 Hz in steps of 200 Hz. For each

(frequency, Vin), we ran 20 trials and take average. This was done to check if the

result was invariant of frequencies, hence lesser data in frequencies.

The code used for the data collection and analysis is shown below:

1 frequencies = [] # Hz

2

3 Vin_allfreq = [] # Vp (V)

4

5 # Vout observed through Lockin detector (V)

6 Vout_obs_allfreq = []

7

8 # Phase observed through Lockin detector (degrees)

9 Phase_obs_allfreq = []

10

11

12

13 trial_name = ’trial5_r ’

14

15 # ====== below code is repeated for each (Vin ,freq) pair ====#

16 curr_freq = 700

17 Curr_Vin = 3.5

18

19 if len(frequencies) == 0 or frequencies [-1] != curr_freq:

20 frequencies.append(curr_freq)

21

22 Vin = [] # Vpp (V)

23

20

3 Experimental Setup and Methods

24 # Vout observed through Lockin detector (V)

25 Vout_obs = []

26

27 # Phase observed through Lockin detector (degrees)

28 Phase_obs = []

29

30 f = curr_freq

31

32 t_gap = (1/(f*N_div))*10**6 #us

33 warmup_flag = 0

34 print(f"Running␣for␣f␣=␣{f}␣Hz")

35 print(f"t_gap␣=␣{t_gap}␣us")

36

37

38 Vin.append(Curr_Vin)

39 for i in range (20):

40 A , phase , warmup_flag = Lockin_detector_single_run(warmup_flag , f, t_gap)

41

42 if i == 0:

43 Vout_obs.append ([A])

44 Phase_obs.append ([phase])

45 else:

46 Vout_obs [-1]. append(A)

47 Phase_obs [-1]. append(phase)

48

49 if Curr_Vin == 3.5: # final voltage in each series.

50 Vin = np.array(Vin)

51 Vout_obs = np.array(Vout_obs)

52 Phase_obs = np.array(Phase_obs)

53

54 Vin_allfreq.append(Vin)

55 Vout_obs_allfreq.append(Vout_obs)

56 Phase_obs_allfreq.append(Phase_obs)

57

58 #---#

59

60 # saving the data after all runs

61 np.save(f’Vin_allfreq{trial_name }.npy’,Vin_allfreq)

62 np.save(f’Vout_obs_allfreq{trial_name }.npy’,Vout_obs_allfreq)

63 np.save(f’Phase_obs_allfreq{trial_name }.npy’,Phase_obs_allfreq)

64 np.save(f’frequencies{trial_name }.npy’,frequencies)

65

66 #---#

67

68 # load data and process

69 trial_name_ = ’trial5_r ’

70

71 Vin_allfreq = np.load(f’Vin_allfreq{trial_name_ }.npy’)

72 Vout_obs_allfreq = np.load(f’Vout_obs_allfreq{trial_name_ }.npy’)

73 Phase_obs_allfreq = np.load(f’Phase_obs_allfreq{trial_name_ }.npy’)

74 frequencies = np.load(f’frequencies{trial_name_ }.npy’)

75

76

77 Vin_rms = Vin_allfreq / (np.sqrt (2)) # Vp to Vrms

78 Vout_obs_avg = np.mean(Vout_obs_allfreq/ (np.sqrt (2)), axis =2) #average over trials

79 Vout_obs_std = np.std(Vout_obs_allfreq/ (np.sqrt (2)), axis =2) #std over trials

80

81 plt.figure(figsize =(10 ,5))

82

83

84 slopes_all_freq = []

85 error_slopes_all_freq = []

86 points_to_avoid = []

87

21

3 Experimental Setup and Methods

88 for i in range(len(frequencies)):

89

90 slope , intercept = np.polyfit(Vin_rms[i],Vout_obs_avg[i],1)

91 error_slopes_all_freq.append(np.std(Vout_obs_avg[i] - (slope * Vin_rms[i] +

intercept)))

92

93 slope = Vout_obs_avg[i] / Vin_rms[i]

94 avg_slope = np.mean(slope)

95 std_slope = np.std(slope)

96 slopes_all_freq.append(avg_slope)

97 error_slopes_all_freq.append(std_slope)

98

99 marker_sizes = [15,9,3]

100 for i in range(len(frequencies)):

101 plt.plot(Vin_rms[i],Vout_obs_avg[i],’o-’,label=f’f␣=␣{frequencies[i]}␣Hz;␣slope␣

=␣{slopes_all_freq[i]:.5f}␣+/-␣

{error_slopes_all_freq[i]:.5f}’,markersize=marker_sizes[i])

102

103

104

105 plt.xlabel(’Vin␣(Vrms)␣[V]’)

106 plt.ylabel(’Vout␣(Vrms)␣[V]’)

107 plt.title(’Vout␣vs␣Vin’)

108 plt.legend ()

109 plt.grid()

110 plt.savefig(f’Vout_vs_Vin{trial_name_ }.png’)

111 plt.show()

112

113 avg_slope = np.mean(slopes_all_freq)

114 std_slope = np.std(slopes_all_freq)

115

116 plt.plot(frequencies ,slopes_all_freq ,’o-’,label= f’slope␣=␣{avg_slope :.6f}␣+/-␣

{std_slope :.6f}’)

117 plt.xlabel(’Frequency␣(Hz)’)

118 plt.ylabel(’Slope␣(V{out -rms}/V{in -rms})’)

119 plt.title(’Slope␣vs␣Frequency ’)

120 plt.ylim(0, slopes_all_freq [0]*1.1)

121 plt.grid()

122 plt.legend ()

123 plt.savefig(f’Slope_vs_Frequency{trial_name_ }.png’)

124 plt.show()

125

126 r_theoretical = 100 # ohm

127 R = 4.7e3

128 alpha = 1

129

130 index = 1 # doesnt make much difference since the slope is constant

131 slope = slopes_all_freq[index]

132 slope_std = error_slopes_all_freq[index]

133

134

135 r_observed = R * avg_slope / alpha

136 R_obs_error = r_observed * (slope_std / slope)

137 relative_error_R = (abs(r_observed - r_theoretical) / r_theoretical) * 100 # in

percentage

138

139 print(f"R_observed␣=␣{r_observed :.3f}(+/-){R_obs_error :.3f}␣ohm")

140 print(f"R_theoretical␣=␣{r_theoretical}␣ohm")

141 print(f"Relative␣error␣=␣{relative_error_R :.3f}%")

22

3 Experimental Setup and Methods

3.5 Measurement of Mutual inductance

Figure 3.3: Mutual inductance coil

Figure 3.4: Mutual inductance experi-
ment setup

Specifications and setup of mutual inductance coil used[4] given in Figure 3.3 and

the experimental setup in Figure 3.4:

• A primary coil of about 20 turns is wound using insulated copper wire, which

can carry a current of about a few mA.

• There are three banana terminals: Red, yellow, and black at one end of the coil.

• A 4.7 kΩ resistor and the primary coil are connected between red and yellow

banana terminals.

• Between the yellow and black, a 100 Ω resistor is connected.

23

3 Experimental Setup and Methods

• The signal generator ground must be connected to the black terminal on the

primary side of the coil box, and the other terminal of the signal generator must

be connected to the red banana terminal on the primary side of the coil box.

• On the same, a secondary coil of about 100 turns is wound at a distance of a

few centimeters from the end of the primary coil.

• The terminals of the secondary coil are brought to two banana terminals on the

other end of the insulating former.

AC signals with Vpeak varying from 2 V to 4 V in steps of 0.5 V . For each signal,

the Vout was calculated and recorded in an array. This was repeated for different

frequencies 500 Hz, 700 Hz, 900 Hz, 1200 Hz and 1500 Hz. For each (frequency, Vin),

we ran 20 trials and take average. This will validate both proportionality related to

input voltage and frequency.

The code for the data and analysis is given below:

1 trial_name_ = ’trial1 ’

2

3 Vin_allfreq = np.load(f’Vin_allfreq{trial_name_ }.npy’)

4 Vout_obs_allfreq = np.load(f’Vout_obs_allfreq{trial_name_ }.npy’)

5 Phase_obs_allfreq = np.load(f’Phase_obs_allfreq{trial_name_ }.npy’)

6 frequencies = np.load(f’frequencies{trial_name_ }.npy’)

7

8 # Vrms from Vp

9 Vin_rms = Vin_allfreq / (np.sqrt (2))

10 Vout_obs_avg = np.mean(Vout_obs_allfreq , axis =2) / (np.sqrt (2)) # average of

Vout_obs across all trials

11 Vout_obs_std = np.std(Vout_obs_allfreq , axis =2) / (np.sqrt (2)) # std of Vout_obs

across all trials

12

13 plt.figure(figsize =(10 ,5))

14

15 slopes_all_freq = []

16 error_slopes_all_freq = []

17

18 for i in range(len(frequencies)):

19

20 slope = Vout_obs_avg[i] / Vin_rms[i]

21 avg_slope = np.mean(slope)

22 std_slope = np.std(slope)

23 slopes_all_freq.append(avg_slope)

24 error_slopes_all_freq.append(std_slope)

25 plt.plot(Vin_rms[i],Vout_obs_avg[i],’o-’,label=f’f␣=␣{frequencies[i]}␣Hz;␣slope␣

=␣{slopes_all_freq[i]:.3e}␣+/-␣{error_slopes_all_freq[i]:.3e}’)

26

24

3 Experimental Setup and Methods

27 plt.xlabel(’Vin␣(Vrms)␣[V]’)

28 plt.ylabel(’Vout␣(Vrms)␣[V]’)

29 plt.title(’Vout␣vs␣Vin’)

30 plt.legend ()

31 plt.grid()

32 plt.savefig(f’Vout_vs_Vin{trial_name_ }.png’)

33 plt.show()

34

35 # slope2 from frequency vs slope

36

37 slopes_all_freq = np.array(slopes_all_freq)

38 error_slopes_all_freq = np.array(error_slopes_all_freq)

39 frequencies = np.array(frequencies)

40

41 slope2 , _ = np.polyfit(frequencies ,slopes_all_freq ,1)

42

43 # calculate the standard deviation of the slope2

44 slope2_std = np.sqrt(np.sum(error_slopes_all_freq **2) / (len(frequencies) - 2)) /

np.sqrt(np.sum((frequencies - np.mean(frequencies))**2))

45

46 plt.figure(figsize =(10 ,5))

47 plt.errorbar(frequencies ,slopes_all_freq , fmt=’o-’, label=f’Slope2␣=␣{slope2 :.3e}␣

+/-␣{slope2_std :.3e}’)

48 plt.xlabel(’Frequency␣(Hz)’)

49 plt.ylabel(’Slope␣(Vout/Vin)’)

50 plt.title(’Slope␣vs␣Frequency ’)

51 plt.legend ()

52 plt.grid()

53 plt.savefig(f’Slope_vs_Frequency{trial_name_ }.png’)

54 plt.show()

55

56 R = 1e3

57 R_f = 10e3

58

59 R = 0.998e3

60 R_f = 53.8e3

61

62 R_coil = 4.7e3

63

64 G = 1 + (R_f / R) # Gain

65

66 M = (R_coil * slope2) / (2 * np.pi * G)

67 M_error = M * (slope2_std / slope2)

68 relative_error = (M_error / M) * 100

69

70 print(f"Mutual␣Inductance␣=␣{M:.3e}␣+/-␣{M_error :.3e}␣H")

71 print(f"Relative␣error␣=␣{relative_error :.3f}␣%␣(with␣respect␣to␣the␣observed)")

72

73 # calculating the avg phase and std phase across all frequencies and trials

74 avg_phase = np.mean(Phase_obs_allfreq) # degrees

75 std_phase = np.std(Phase_obs_allfreq) # degrees

76

77 print(f"Phase␣=␣{avg_phase :.3f}␣+/-␣{std_phase :.3f}␣degrees")

25

Chapter 4

Observations, Calculations and Er-
ror Analysis

Find the implementations and files in the Github repository.

4.1 Sin wave reference - implementation

For the sin wave implementation, we tested with a normal signal as well as a noisy

signal with a phase.

For the former, the input and reference signals are shown in Figure 4.1, and the

signal recreated using the lock-in detection is depicted in Figure 4.2.

For the latter, The input and reference signals are shown in Figure 4.3, whereas

the recreated signal is shown in Figure 4.4. The calculated outputs and errors (See

section 4.5) are given below.

Figure 4.1: Input and reference signals -
normal (sin implementation)

Figure 4.2: Input and recreated signal -
normal (sin implementation)

26

https://github.com/AdhilshaA/Lockin_expeyes

4 Observations, Calculations and Error Analysis

Figure 4.3: Input and reference signals -
noisy (sin implementation)

Figure 4.4: Input and recreated signals -
noisy (sin implementation)

1 ‘‘‘

2 OUTPUT

3 ------

4 Calculated Amplitude: 0.1497 V

5 Calculated Phase: 82.9352 degrees

6 Calculated Frequency: 3.3069 Hz

7

8 Original Amplitude: 0.15

9 Original Phase: 90.0

10 Original Frequency: 3.3

11

12 Relative Error for Amplitude: 0.19828005884412842 %

13 Relative Error for Phase: 7.849793339801733 %

14 Relative Error for Frequency: 0.20926491417123058 %

15 ‘‘‘

4.2 Square wave reference - implementation

For the square wave back-end, we did the same testing, and for the normal signal, the

input and reference signals are shown in Figure 4.5, and the signal recreated using

the lock-in detection is depicted in Figure 4.6.

For the latter, The input and reference signals are shown in Figure 4.7, whereas

the recreated signal is shown in Figure 4.8. The calculated outputs and errors for this

(See section 4.5) are given below.

1 ‘‘‘

27

4 Observations, Calculations and Error Analysis

Figure 4.5: Input and reference signals -
normal (square implementation)

Figure 4.6: Input and recreated signal -
normal (square implementation)

Figure 4.7: Input and reference signals -
noisy (square implementation)

Figure 4.8: Input and recreated signals -
noisy (square implementation)

2 OUTPUT

3 ------

4 Observed Amplitude: 0.10046719832951305

5 Observed Phase: 45.93217260846667 deg

6

7 Original Amplitude: 0.1 V

8 Original Phase: 45.93217260846667 deg

9

10 Relative Amplitude Error: 0.47 %

11 Relative Phase Error: 2.07 %

12 ‘‘‘

28

4 Observations, Calculations and Error Analysis

4.3 Low Resistance

With the circuit given in Figure 2.1, we placed a 100 Ω small resistor, 4.7 kΩ as the

large resistor, and acquired data. With the Square wave implementation of Lock-in

detection implemented in Section 3.3.2 and steps for measurement of low resistance

in Section 3.4, we got the following results.

Figure 4.9: The calculation of slope for low resistance measurement for difference
frequencies

As per equation (2.19), with Vout/Vin as slope, we can write:

r =
R.(slope)

α
(4.1)

where α = 1 as discussed in 3.4. The acquired data and the slope calculated are

shown in Figure 4.9 and the independence of this slope with respect to frequency is

shown in Figure 4.10. The error calculation equation is discussed later. All these are

implemented with the code, and the final output is:

1 R_observed = 99.401(+/ -) 0.146 ohm

2 R_theoretical = 100 ohm

3 Relative error = 0.599%

29

4 Observations, Calculations and Error Analysis

Figure 4.10: Independence of slopes in Figure 4.9 w.r.t. the frequency

4.4 Mutual Inductance

With the circuit given in Figure 2.2, we used a 0.998 kΩ (measured) input resistor and

a potentiometer whose resistance was set to 53.8 kΩ as the feedback resistor for the

Op-amp. With the Square wave implementation of Lock-in detection implemented in

Section 3.3.2 and steps for measurement of mutual inductance in Section 3.5, we got

the following results.

As per equation (2.23), with Vout/V0 as slope1, we can write:

M =
(slope1)R

2πfα
(4.2)

We calculated slope1 as the equation; the result is shown in Figure 4.11. By drawing

slope1 vs f and taking the slope2 of this, we can rewrite the above equation as:

M =
(slope2)R

2πα
(4.3)

where is calculated using equation (2.24) and results shown in Figure 4.12. The final

values of the calculations (errors discussed later) are given below.

30

4 Observations, Calculations and Error Analysis

1 Mutual Inductance = 1.451e-04 +/- 1.052e-06 H

2 Relative error = 0.725 % (with respect to the observed)

3 Phase = -96.864 +/- 4.311 degrees

Figure 4.11: The calculation of slope1 for mutual inductance

Figure 4.12: Calculation of slope2 from data in Figure 4.11

31

4 Observations, Calculations and Error Analysis

4.5 Error analysis

For the Vout vs Vin graphs, since the intercept is supposed to be zero, the slope (slope1

for mutual inductance) was calculated as:

slopei =
Vout

Vin

(4.4)

For each frequency (denoted by subscript i), the slope will be the average of this value

over the data point, and the standard deviation (δ(slopei)) will give the corresponding

error.

For the calculation of slope 2, the calculation is done by fitting the data, and the

following equation would give the error in slope 2.

δ(slope2) =

√
n∑

i=1

δslope2i
(n−2)√

n∑
i=1

(fi − ¯̄f)2
(4.5)

For independent measurements xi of the same quantity, the mean and error are

given by:

x̄ =
1

n

n∑
i=1

xi (4.6)

δx =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (4.7)

For finding relative error of a quantity x± δx with respect to the ground truth x̄,

w have:

relative error(%) =
x− x̄

x̄
× 100 (4.8)

relative error(%) =
δx

x
× 100 (w.r.t. x) (4.9)

32

Chapter 5

Discussions

Why is the phase detection giving higher error relative to amplitude?

Any phase introduced by the electrical components in the experiment will alter the

phase of the signal of interest and that will equally affect the in phase and quadrature

products. Since according to eq.s (2.6) and (2.14) shows that the division of the DC

components depends on the phase part (sin(ϕ)/cos(ϕ)). This errors can also couple

with errors from FFT stemming from not having integer number of cycles. There

are solutions to the errors from FFT such as triggering the signal from right side, or

applying techniques like like Hann windowing which fades the signal from both ends.

Since our sample size and sampling frequency are limited, the application of Hann

windowing will limit the information whereas the right clipping did improve results

without this loss.

Why is the sampling frequency varied for each frequency or signal?

Since we are using capture2, it was found that signal and reference can have only

5000 samples each. Since this is the case, we decided to sample the signal in such a

way that the time gap between two consecutive samples is calculated so that at least

64 samples are taken per cycle. Thus we get a fair sampling of the signal and enough

cycles in a reasonable scope of frequencies.

This required primary information on frequency, which can be obtained with some

initial sampling rate and an FFT of the acquired trial reference.

Why are we performing a warmup-test run before data collection?

33

5 Discussions

While testing the capabilities and limitations of the expEYES-17 hardware, we

found that the capture2 does not work without any explainable reasons. capture1

work perfectly fine at the same time.

While troubleshooting with various parameters, we found that the capture2 with

a high number of samples doesn’t work unless we start from a smaller number of

samples and slowly build up to the required value. For example, to get 5000 samples,

we need to run with 500, 1000, 1500,.. etc., and build up to 5000 samples. Oddly

enough, this ’warmup’ needs to be done only once for a certain sampling frequency

and we can continue reading till we change the sampling frequency or number of

samples. Thus, we came up with the warmup loop for this purpose. See code in 3.1.

Why do we need 4N samples from each cycle for square wave reference?

The intuition behind this was not explained in the paper. Nonetheless, by going

through some references, we have reached a possible basis for the intuition. If the

signal contains high frequency components, we will need to sample at a higher rate to

avoid losing information that is in the signal. Generally speaking, sampling at twice

the signal’s maximum frequency is required to retain all of its information. This is

called the Nyquist rate.

In case of quadrature signals of square waves, we have half the cycle of in phase

holding the 0 (or 1) value and the quadrature signal only lagging by a quarter of

cycle. This indicates 50% overlap and to differentiate, between these signals, we need

at least 4 points per cycle for each.

Thinking in terms of practical quadrature multiplication, quadrature signal is like

lagging the original reference by (1/4)th of a cycle which is possible with at least

4 points per cycle. Thus, at least 4 points are needed to retain information from

quadrature signals multiplication.

34

5 Discussions

Is triggering necessary, and why?

Triggering is required depending on the type of back-end we are using. As dis-

cussed before in Section 3, if the frequency from the reference signal is identified

through FFT and then the in-phase and quadrature signals (either sin or square) are

produced, we need to trigger the signal to align it properly.

If the quadrature signal is produced by shifting the signal electronically, or by

finding the frequency and shifting by (1/4)th of a cycle, the triggering itself need not

be necessary. Nonetheless, triggering is a importance tool to be available since it

helps with visualization the signal better.

Are there better methods to optimize these processes?

As mentioned in the previous question, we can use Hann windowing and other

techniques to improve the FFT accuracy. Improving the data collecting will be a huge

help to the implementation. The hurdle there is to improve the efficiency, sampling

frequency, and Number of samples without weight on the resource cost. ExpEYES

was resource efficient with its low cost but flexible sampling. The overall python

codes can also be made more efficient in terms of memory and parallelized which

is too advanced for the current experiment and implementation. This can possibly

improve the implementation to real-time signal lock-in detection. The real-time signal

lock-in is on standby, specifically due to the need of ’warmup’ mentioned before and

other extra options we added. Correcting this might need a deep dive in the packages

of eyes17 python package itself.

Can this implementation be called a Lock-in amplifier?

Since there are no components in the Lock-in implementation that amplifies the

signal value, we are simply detecting the signal in its original form. But, as we did

it for mutual inductance experiment where the signal is extremely weak (below the

35

5 Discussions

threshold of resolution of data collection), we can add an amplified with certain gain

G, and then pass the signal to our Lock-in implementation. Since the process is

robust to noise, the Lock-in detector will still detect the amplified signal, even amidst

amplified noise. Then we can use the gain G to figure out the original value.

Strictly speaking, the implementation does not amplify the signals since the res-

olution remains the same despite digital scaling, which does not improve the results,

but simply scale it. Hence, it makes more sense to call it Lock-in detection.

5.1 Sources of error

The possible sources of error are:

• Due to the nature of electrical components, the circuits in use can cause a

change in phase with respect to the expected one.

• The limited resolution and voltage limits of the ExpEYES-17 hardware.

• Errors within the ExpEYES-17 hardware in the collection of data (rare glitches).

• Use of incorrect or less precise circuit components and signal conditioning com-

ponents, including filters and amplifiers, can cause distortion in the signal.

• The practical experimental setup (long wires, inefficient connections) causes

power dissipation. Overheating of components causes additional losses in the

circuit.

• The FFT works better with an integer number of cycles, especially for sin wave

back-end and phase detection.

• Errors can be introduced by changes in external variables, such as ambient

noise, temperature fluctuations, and electromagnetic interference.

36

5 Discussions

• Irregularities in quadrature form of reference.

5.2 Precautions

Several precautions were taken during the experiment, including:

• Components with values closest to the specified ones are chosen with care.

• Components are individually checked, and the circuit is kept compact as much

as possible using efficient connections. The circuit is turned off and kept at a

moderate temperature and condition for observations.

• Securely fix all components to the breadboard, check for short circuits within

the circuit, and test the signals before processing.

• Choose the Voltage limits and resolutions of A1 and A2 inputs of ExpEYES-17

according to the signal being measured.

37

Chapter 6

Results and Conclusions
The implementation of Lock-in detection using sin-wave and square-wave references

has been illustrated in Sections 4.1 and 4.2 respectively.

As for the results of each experiment, through the measurement of low resistance

using Lock-in detection, we measured the resistance to be (99.4± 0.1)Ω whereas the

ground truth was 100Ω.

For the measurement of mutual inductance, we achieved the following results:

• The emf is proportional to the input Voltage as shown in Figure 4.11.

• The emf is proportional to frequency as shown in Figure 4.12.

• There is a phase difference of 90◦ between the input and output as per the result

of phase = (−97± 4)◦.

• The value of mutual inductance was calculated to be (145± 1)µH, whereas the

ground truth is said to be close to 150µH as per experiments from the previous

semester.

To sum up, this project has illustrated how lock-in detection approaches

may be used in practice with ExpEYES. It has shown how to use both a

square wave reference signal and a sine wave reference for standard lock-

in detection. A set of tests centered on low-resistance measurements and

mutual inductance has confirmed that lock-in detection works well for

separating weak signals from noisy backgrounds.

38

References
[1] G. Li, S. Zhang, M. Zhou, Y. Li, L. Lin. 2013. A method to remove odd har-

monic interferences in square wave reference digital lock-in amplifier. Review of

Scientific Instruments. 84 (2).

[2] Inter-University Accelerator Centre. ExpEYES-17 User Manual: Experiments

for Young Engineers and Scientists. 97-99. [Link]

[3] M. Li, Y. Sun, Z. Liang, S, Zhang. 2023. Square wave reference digital lock-in

detection using non-orthogonal demodulation. Heliyon. 9 (1).

[4] NISER. Teaching Laboratory Manual: Lock-in Amplifier. [link]

[5] S. Bhattacharyya, R. Ahmed, B. Purkayastha, and K. Bhattacharyya. 2016.

Implementation of digital lock-in amplifier. J. Phys.: Conf. Ser. 759 012096.

39

https://csparkresearch.in/assets/pdfs/expeyes17.pdf
https://oldsite.niser.ac.in/sps/sites/default/files/basic_page/Lockinamplifier_manual_2023.pdf

	Introduction
	Theory
	Lock-in detection
	Sin Wave reference
	Square Wave Reference

	Measurement of Low Resistance
	Measurement of Mutual inductance

	Experimental Setup and Methods
	Data collection using ExpEYES-17
	Sin wave reference & Lock-in detection
	Square wave reference & Lock-in detection
	Sin wave back-end
	Square wave back-end

	Measurement of low resistance
	Measurement of Mutual inductance

	Observations, Calculations and Error Analysis
	Sin wave reference - implementation
	Square wave reference - implementation
	Low Resistance
	Mutual Inductance
	Error analysis

	Discussions
	Sources of error
	Precautions

	Results and Conclusions
	References

